Use of Remote Sensing in Cotton to Determine Potassium Status and Predict Yield

> Derrick Oosterhuis and Taylor Coomer Dep. Crop, Soil, and Environmental Sciences University of Arkansas

Research Objective

 Using Remote Sensing Technologies and Nitrogen-Sensitive Indices to Predict Cotton K Status and Yield

Outline

- Introduction
 - K in cotton
 - Spatial variability in fields
 - Spectral response to N and K
- Objectives and Hypotheses
- Methods
- Results
 - Leaf K Concentraiton
 - Plant Available K₂O
 - Yield
- Discussion
- Conclusions

- Cotton is less efficient at extracting K from soil than other row crops
- Leaf deficiency symptoms include yellowing, drying of leaf tips, and an overall bronzing of affected leaves
 - Upper leaf deficiencies possibly due to high yielding, short season cultivars and the sink demand of bolls
- Deficiencies can occur unpredictably and under sufficient soil K conditions

Production fields are spatially variable

- Raper et al (2013) tested spectral reflectance indices to remotely sense N deficiency by correlating chlorophyll content with reflectance indices
 - Measure cotton N status in real-time
- Found an average response across the first and third weeks of flowering in several indices to changes in selected cotton growth parameters

- Indices may be sensitive to more than N deficiency
 - Water and nutrient stress
- Unnecessary N application environmentally and economically costly
- Goal of remote sensing research to distribute fertilizer N, K based on spatial demand

- Determine if cultivars differ in values from currently available indices formulated for N-status detection from active sensors
- Determine if N-sensitive indices are sensitive to leaf K concentration and available K₂O in the soil
- Evaluate the role of N-sensitive indices in predicting yield

Hypotheses

- NDVI would more accurately predict leaf K, available K₂O, and yield than NDRE, due to the rededge band reflecting changes in chlorophyll and the near infrared band reflecting biomass and cell structure.
- Both NDVI and NDRE would more accurately predict parameters than the CCCI due to the strong influence of the red-edge in the index.

Methods

- Location—Lon Mann Cotton Research Station
 - Marianna, AR
 - Long-term cotton K fertility trial plot
 - Calloway Silt Loam

Methods

- Completely Randomized Design
 - 4 row plots, 50' length
 - Planted 3.5 plants/ft on 38" beds
 - Furrow irrigated as needed
 - Fertilizer N applied uniformly

Treatments

- K₂O Rates
 - 0, 30, 60, 90 lb acre⁻¹
 - Preplant 0-0-60
- Cultivars
 - Phytogen 499 WRF
 - Stoneville 5458 B2RF
 - DeltaPine 0912 B2RF

Measurements

Soil samples

- Mehlich 3 extraction
- For analysis, available K was used instead of K rate due to variability of K in field. This was calculated using the formula:
 - Available K = (Soil Test K x 2 x 1.2) + Fertilizer K
- Tissue
 - Leaf K
- Reflectance
 - Crop Circle ACS-470
 - Active light sensor
 - 10 AM-2 PM
 - First flower (FF) and three weeks post first flower (FF3)
 - 36" height above canopy

Analysis

- Data points evaluated and assigned to plots using ArcGIS and ArcMAP 10.2.2
- Regression analysis on JMP Pro 11

Results—Leaf K%

Growth Stage	Effect	NDVI		NDRE		CCCI	
FF	Cultivar	0.0343	Adjusted R ² =0.815	NS		NS	
	Leaf K%	0.0274		0.0395	Adjusted R ² =0.617	NS	
	Cul * K%	0.0014		0.0087		NS	
FF3	Cultivar	NS		0.0058	Adjusted R ² =0.335	0.0131	Adjusted R ² =0.689
	Leaf K%	NS		NS		NS	
	Cul * K%	NS		NS		NS	

Leaf K %—NDVI

0.95 **VEGETATIVE INDEX READING** 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 LEAF K %

First Flower

Three Weeks Post First Flower

Leaf K %—NDRE

Three Weeks Post First Flower

1.5

1.3

LEAF K%

1.7

2.1

1.9

2.3

1.1

0.5

0.7

1.1

0.9

Three Weeks Post First Flower

Results—Available K₂O UA

Growth Stage	Effect	NDVI		NDRE		CCCI	
FF	Cultivar	0.0472	Adjusted R ² =0.798	NS		NS	
	Avail K ₂ O	NS		NS		NS	
	Cul * K ₂ O	NS		NS		NS	
FF3	Cultivar	NS		0.0048	Adjusted R ² =0.344	0.0166	Adjusted R ² =0.690
	Avail K ₂ O	NS		NS		NS	
	Cul * K ₂ O	NS		NS		NS	

Available K₂O—NDVI

First Flower

Three Weeks Post First Flower

Available K₂O—NDRE

Three Weeks Post First Flower

Available K₂O—CCCI

First Flower

Three Weeks Post First Flower

Results—Yield

Results—Yield

Growth Stage	Effect	NDVI		NDRE		CCCI	
FF	Cultivar	NS		NS		NS	
	Yield	<0.0001	Adjusted	<0.0001	Adjusted	NS	
	Cul*Yield	0.0009	R ² =0.311	0.0032	R ² =0.339	0.0019	Adjusted R ² =0.201
FF3	Cultivar	0.0004	Adjusted R ² = 0.338	0.0003	Adjusted R ² =0.277	0.0036	Adjusted R ² =0.693
	Yield	0.0408		NS		NS	
	Cul*Yield	<0.0001		0.0031		0.0056	

Discussion

- Early-season NDVI most accurately describes leaf K
 - Red-edge related to chlorophyll whereas near infrared related to cellular structure and intracellular spaces
 - Leaves too deficient later in season to detect differences
 - FF3 leaf K range from 0.4-1.2%
- Available K₂O possibly too low to make a difference in reflectance values
 - Long-term fertility plots
 - Leaf K more efficient in describing plant status

Discussion

- Yield most accurately predicted by late-season CCCI
 - CCCI relies on both biomass and chlorophyll content
 - Yield related to both biomass and chlorophyll content

 Two-year study, need multiple soil types, locations and cultivars for adoption by producers

Conclusions

- Early-season NDVI most accurately determines leaf K concentration
- Indices chosen were unable to determine plant available K₂O in the soil
- Yield was best predicted using the CCCI late-season

Acknowledgements

- Associates:
 - Dr. Leo Espinoza
 - Dr. Fred Bourland
 - Dr. Curt Rom
- Cotton Incorporated
- Fluid Fertilizer Foundation

